Example usage¶
This notebook shows example usage of rerfClassifier
class. Based on the guide found at https://www.datacamp.com/community/tutorials/random-forests-classifier-python with rerfClassifier
swapped out in place of sklearn’s RandomForestClassifier
This notebook can run interactively using Gigantum
[1]:
from rerf.rerfClassifier import rerfClassifier
# Import scikit-learn dataset library
from sklearn import datasets
[2]:
# Load dataset
iris = datasets.load_iris()
[3]:
# print the label species(setosa, versicolor,virginica)
print(iris.target_names)
['setosa' 'versicolor' 'virginica']
[4]:
# print the names of the four features
print(iris.feature_names)
['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
[5]:
# Creating a DataFrame of given iris dataset.
import pandas as pd
[6]:
data = pd.DataFrame(
{
"sepal length": iris.data[:, 0],
"sepal width": iris.data[:, 1],
"petal length": iris.data[:, 2],
"petal width": iris.data[:, 3],
"species": iris.target,
}
)
print(data.head())
sepal length sepal width petal length petal width species
0 5.1 3.5 1.4 0.2 0
1 4.9 3.0 1.4 0.2 0
2 4.7 3.2 1.3 0.2 0
3 4.6 3.1 1.5 0.2 0
4 5.0 3.6 1.4 0.2 0
[7]:
# Import train_test_split function
from sklearn.model_selection import train_test_split
[8]:
X = data[["sepal length", "sepal width", "petal length", "petal width"]] # Features
y = data["species"] # Labels
[9]:
# Split dataset into training set and test set
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3
) # 70% training and 30% test
[10]:
# Create a RerF Classifier
clf = rerfClassifier(n_estimators=100)
[11]:
print(clf)
rerfClassifier(feature_combinations=1.5, image_height=None, image_width=None,
max_depth=None, max_features='auto', min_samples_split=1,
n_estimators=100, n_jobs=None, oob_score=False,
patch_height_max=None, patch_height_min=1, patch_width_max=None,
patch_width_min=1, projection_matrix='RerF', random_state=None)
[12]:
# Train the model using the training sets y_pred=clf.predict(X_test)
clf.fit(X_train, y_train)
[12]:
rerfClassifier(feature_combinations=1.5, image_height=None, image_width=None,
max_depth=None, max_features='auto', min_samples_split=1,
n_estimators=100, n_jobs=None, oob_score=False,
patch_height_max=None, patch_height_min=1, patch_width_max=None,
patch_width_min=1, projection_matrix='RerF', random_state=None)
[13]:
y_pred = clf.predict(X_test)
[14]:
# Import scikit-learn metrics module for accuracy calculation
from sklearn import metrics
[15]:
# Model Accuracy, how often is the classifier correct?
print("Accuracy:", metrics.accuracy_score(y_test, y_pred))
Accuracy: 0.9777777777777777