Recognizing hand-written digits using Structured RerF¶
An example showing how the scikit-learn can be used to recognize images of hand-written digits.
This was adapted from: https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html
[1]:
%matplotlib inline
print(__doc__)
# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
# License: BSD 3 clause
# Standard scientific Python imports
import matplotlib.pyplot as plt
# Import datasets, classifiers and performance metrics
from sklearn import datasets, metrics
# The digits dataset
digits = datasets.load_digits()
# The data that we are interested in is made of 8x8 images of digits, let's
# have a look at the first 4 images, stored in the `images` attribute of the
# dataset. If we were working from image files, we could load them using
# matplotlib.pyplot.imread. Note that each image must have the same size. For these
# images, we know which digit they represent: it is given in the 'target' of
# the dataset.
images_and_labels = list(zip(digits.images, digits.target))
for index, (image, label) in enumerate(images_and_labels[:4]):
plt.subplot(2, 4, index + 1)
plt.axis('off')
plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
plt.title('Training: %i' % label)
# To apply a classifier on this data, we need to flatten the image, to
# turn the data in a (samples, feature) matrix:
n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))
Automatically created module for IPython interactive environment
[2]:
from rerf.rerfClassifier import rerfClassifier
# Create a classifier: Structured RerF
clf = rerfClassifier(projection_matrix="S-RerF",
image_height=8,
image_width=8,
n_estimators = 100,
)
# We learn the digits on the first half of the digits
clf.fit(data[:n_samples // 2], digits.target[:n_samples // 2])
[2]:
rerfClassifier(feature_combinations=1.5, image_height=8, image_width=8,
max_depth=None, max_features='auto', min_parent=1,
n_estimators=100, n_jobs=None, patch_height_max=None,
patch_height_min=1, patch_width_max=None, patch_width_min=1,
projection_matrix='S-RerF', random_state=None)
[3]:
# Now predict the value of the digit on the second half:
expected = digits.target[n_samples // 2:]
predicted = clf.predict(data[n_samples // 2:])
print("Classification report for classifier %s:\n%s\n"
% (clf, metrics.classification_report(expected, predicted)))
print("Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted))
images_and_predictions = list(zip(digits.images[n_samples // 2:], predicted))
for index, (image, prediction) in enumerate(images_and_predictions[:4]):
plt.subplot(2, 4, index + 5)
plt.axis('off')
plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
plt.title('Prediction: %i' % prediction)
plt.show()
print("Score", clf.score(data[n_samples // 2:], expected))
Classification report for classifier rerfClassifier(feature_combinations=1.5, image_height=8, image_width=8,
max_depth=None, max_features='auto', min_parent=1,
n_estimators=100, n_jobs=None, patch_height_max=None,
patch_height_min=1, patch_width_max=None, patch_width_min=1,
projection_matrix='S-RerF', random_state=None):
precision recall f1-score support
0 1.00 0.98 0.99 88
1 0.95 0.82 0.88 91
2 0.96 0.87 0.91 86
3 0.85 0.87 0.86 91
4 0.94 0.91 0.93 92
5 0.81 0.93 0.87 91
6 0.94 0.99 0.96 91
7 0.94 0.96 0.95 89
8 0.91 0.84 0.88 88
9 0.85 0.95 0.90 92
accuracy 0.91 899
macro avg 0.92 0.91 0.91 899
weighted avg 0.92 0.91 0.91 899
Confusion matrix:
[[86 0 0 0 1 0 0 0 1 0]
[ 0 75 0 2 0 3 0 1 1 9]
[ 0 0 75 11 0 0 0 0 0 0]
[ 0 0 3 79 0 4 0 2 2 1]
[ 0 1 0 0 84 1 4 1 1 0]
[ 0 0 0 0 2 85 2 0 0 2]
[ 0 1 0 0 0 0 90 0 0 0]
[ 0 0 0 0 2 0 0 85 1 1]
[ 0 2 0 1 0 8 0 1 74 2]
[ 0 0 0 0 0 4 0 0 1 87]]
Score 0.9121245828698554